Some tips on 5264-35-7

5264-35-7 5-Methoxy-3,4-dihydro-2H-pyrrole 353443, apyrrolines compound, is more and more widely used in various fields.

5264-35-7, 5-Methoxy-3,4-dihydro-2H-pyrrole is a pyrrolines compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

5264-35-7, To a solution of 5-methoxy-3,4-dihydro-2H-pyrrole (crude) in DCM (200 mL) was added MeOH (800 mL) and aminoacetaldehyde dimethyl acetal (105 g, 1000 mmol). The mixture was stirred at 60¡ã C. for 6 h before being concentrated under reduced pressure to afford N-(2,2-dimethoxyethyl)-3,4-dihydro-2H-pyrrol-5-amine (82 g, 48percent). The crude product was dissolved in formic acid (400 mL) and stirred at reflux for 17 h before being concentrated under reduced pressure to afford 6,7-dihydro-5H-pyrrolo[1,2-a]imidazole (46 g, 90percent). 1H NMR (400 MHz, DMSO-d6, 30¡ã C.) 2.51-2.44 (2H, m), 2.69-2.65 (2H, m), 3.91-3.88 (2H, m), 6.84 (1H, s), 7.02 (1H, s).

5264-35-7 5-Methoxy-3,4-dihydro-2H-pyrrole 353443, apyrrolines compound, is more and more widely used in various fields.

Reference£º
Patent; AstraZeneca AB; Barlaam, Bernard; De Savi, Christopher; Hawkins, Janet; Hird, Alexander; Lamb, Michelle; Pike, Kurt; Vasbinder, Melissa; (134 pag.)US2016/376287; (2016); A1;,
Pyrroline – Wikipedia
1-Pyrroline | C4H7N – PubChem

Analyzing the synthesis route of 31970-04-4

The synthetic route of 31970-04-4 has been constantly updated, and we look forward to future research findings.

31970-04-4, Benzyl 2,5-dihydro-1H-pyrrole-1-carboxylate is a pyrrolines compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

A mixture of commercially available 2,5-dihydro-pyrrole-1-carboxylic acid benzyl ester (5.0 g,24.6 mmol) and m-CPBA (77%, 11.1 g, 50 mmol) in chloroform (100 mL) was stirred at 45Covernight. The reaction mixture was diluted with DCM (100 mL) and washed sequentiallywith sat. aq. Na2S2O3, and iN NaOH. The organic layer was dried with anhydrous MgSO4 and then concentrated. The crude material was purified by chromatography on silica (20- 70% EtOAc in Petrol) to give the title compound (4.65 g, 86%) as an oil. MS: [M+H] = 220., 31970-04-4

The synthetic route of 31970-04-4 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; ASTEX THERAPEUTICS LIMITED; CHESSARI, Gianni; JOHNSON, Christopher Norbert; PAGE, Lee William; BUCK, Ildiko Maria; DAY, James Edward Harvey; HOWARD, Steven; SAXTY, Gordon; MURRAY, Christopher William; WO2014/60770; (2014); A1;,
Pyrroline – Wikipedia
1-Pyrroline | C4H7N – PubChem

Brief introduction of 5264-35-7

The synthetic route of 5264-35-7 has been constantly updated, and we look forward to future research findings.

5264-35-7,With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.5264-35-7,5-Methoxy-3,4-dihydro-2H-pyrrole,as a common compound, the synthetic route is as follows.

Ethyl 7-hydroxy-6-methyl-5-oxo-1,2,3,5-tetrahydroindolizine-8-carboxylate (8b) Compound 8a (Aust. J. Chem., 1999, 52, 1013-1020, 7 g, 32.3 mmol) was added to a mixture of triethylamine (0.16 mL, 1.15 mmol) and 2-methoxy-1-pyrroline (2.9 g, 29.4 mmol) and the reaction was stirred at room temperature for 10 days. The solution was concentrated in vacuo and the resulting solid was filtered and washed with diethyl ether to give 1.83 g (22percent) of the title compound as a white solid powder. 1H NMR (400 MHz,DMSO-d6): delta 11.47 (s, 1H), 4.33 (q, 2H, J=7.1 Hz), 4.00 (t, 1H, J=7.6 Hz), 3.44 (t, 2H, J=8.0 Hz), 2.03-2.16 (m, 2H), 1.83 (s, 3H), 1.33 (t, 3H, J=7.1 Hz). MS (ES) [m+H] calc’d for C12H15NO4, 238; found 238.

The synthetic route of 5264-35-7 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; TAKEDA PHARMACEUTICAL COMPANY LIMITED; US2009/124595; (2009); A1;,
Pyrroline – Wikipedia
1-Pyrroline | C4H7N – PubChem

Downstream synthetic route of 872-32-2

As the paragraph descriping shows that 872-32-2 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.872-32-2,2-Methyl-1-pyrroline,as a common compound, the synthetic route is as follows.

5-Methyl-3,4-dihydro-2H-pyrrole (120 mmol, 1.0 equiv) was added to a suspension of N-chlorosuccinamide (8.0 equiv) in tetrahydrofuran (300 mL). The resulting mixture was heated to 55¡ã C. and stirred for 35 min. The reaction mixture was cooled to RT and water (250 mL) was added. The aqueous layer was extracted with hexanes (2¡Á) and the combined organic layers were concentrated to vacuum to afford compound 277., 872-32-2

As the paragraph descriping shows that 872-32-2 is playing an increasingly important role.

Reference£º
Patent; Intellikine LLC; Infinity Pharmaceuticals, Inc.; CASTRO, Alfredo C.; CHAN, Katrina; EVANS, Catherine A.; JANARDANANNAIR, Somarajannair; LESCARBEAU, Andre; LI, Liansheng; LIU, Tao; LIU, Yi; REN, Pingda; SNYDER, Daniel A.; TREMBLAY, Martin R.; US2013/267521; (2013); A1;,
Pyrroline – Wikipedia
1-Pyrroline | C4H7N – PubChem

Some tips on 31970-04-4

31970-04-4, 31970-04-4 Benzyl 2,5-dihydro-1H-pyrrole-1-carboxylate 643471, apyrrolines compound, is more and more widely used in various fields.

31970-04-4, Benzyl 2,5-dihydro-1H-pyrrole-1-carboxylate is a pyrrolines compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

Example 051A: To benzyl 2, 5-dihydro- l H-pyrrole-l-carboxy late ( 1 g, 4.9 mmol) in DCM (10 mL) at 0 C was added 3-chloroperbenzoic acid ( 1.43 g, 6.4 mmol). The solution was allowed to warm to rt and stir for 5 h. Aq sodium thiosulfate and IN NaOH were added and the mixture was extracted with DCM. The organic layer was dried over sodium sulfate, filtered, and concentrated. The residue was purified by silica gel chromatography eluting with 0-70% ethylacetate in hexanes to afford benzyl 6-oxa-3-azabicyclo[3.1.0]hexane-3-carboxylate as an oil (560 mg, 52%); LCMS (ESI) m/z 220 (M + H)

31970-04-4, 31970-04-4 Benzyl 2,5-dihydro-1H-pyrrole-1-carboxylate 643471, apyrrolines compound, is more and more widely used in various fields.

Reference£º
Patent; AMBIT BIOSCIENCES CORPORATION; ABRAHAM, Sunny; BHAGWAT, Shripad, S.; HADD, Michael, J.; HOLLADAY, Mark, W.; LIU, Gang; MILANOV, Zdravko, V.; PATEL, Hitesh, K.; SETTI, Eduardo; SINDAC, Janice, A.; WO2011/88045; (2011); A1;,
Pyrroline – Wikipedia
1-Pyrroline | C4H7N – PubChem

Analyzing the synthesis route of 872-32-2

The synthetic route of 872-32-2 has been constantly updated, and we look forward to future research findings.

872-32-2, 2-Methyl-1-pyrroline is a pyrrolines compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

Example 6 5-(5-(4-Fluorophenyl)-4-(pyridin-2-ylmethylamino)pyrrolo[1,2-f][1,2,4]triazin-2-yl)pyridine-3-sulfonamide The commercially available methyl 3-chloro-1H-pyrrole-2-carboxylate (1.50 g, 94.0percent, yellow solid) was synthesized according to Fang et al., J. Med. Chem., 53:7967-7978 (2010) using 2-methyl-1-pyrroline (0.831 g, 10.0 mmol, commercial), NCS (10.7 g, 80.0 mmol) and NaOMe in MeOH (3M, 20 mL, 60.0 mmol). LCMS Condition B-41: retention time 1.71 min, [M+1]=160.10. 1H NMR (400 MHz, CDCl3) delta 3.90 (s, 3H), 6.25 (t, J=3.0 Hz, 1H), 6.86 (t, J=3.0 Hz, 1H), 9.17 (br s, 1H)., 872-32-2

The synthetic route of 872-32-2 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; Finlay, Heather; Adisechan, Ashok Kumar; Dhondi, Naveen Kumar; Govindrajulu, Kavitha; Gunaga, Prashantha; Lloyd, John; Srinivasu, Pothukanuri; US2014/256719; (2014); A1;,
Pyrroline – Wikipedia
1-Pyrroline | C4H7N – PubChem

Simple exploration of 5264-35-7

5264-35-7 5-Methoxy-3,4-dihydro-2H-pyrrole 353443, apyrrolines compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.5264-35-7,5-Methoxy-3,4-dihydro-2H-pyrrole,as a common compound, the synthetic route is as follows.

A 2L 3-necked flask equipped with a mechanical stirrer was charged with ethyl 2-amino-1 /-/-pyrrole-3-carboxylate (100 g, 0.648 mol) and 5-methoxy-3,4-dihydro-2/-/-pyrrole (128.6 g, 1.5 mol) and the mixture was stirred at 90¡ãC. After 8 h, 5-methoxy-3,4-dihydro-2H-pyrrole (45 g, 0.454 mol) was added then the mixture was kept at the same temperature overnight. It was purged with argon for 4 h then cooled to room temperature (rt). EtOAc (1 L) was added, the mixture was sonicated for 1 h and left to stand at rt overnight. The suspension was stirred for 4 h, then filtered. The solid was washed with EtOAc and dried to afford 1 ,6,7,8-tetrahydro-4H-dipyrrolo[1 ,2-a:2′,3′-d]pyrimidin-4-one as a greenish solid (96.8 g, 85.3 percent yield); LCMS [M+H]+ 176., 5264-35-7

5264-35-7 5-Methoxy-3,4-dihydro-2H-pyrrole 353443, apyrrolines compound, is more and more widely used in various fields.

Reference£º
Patent; ONTARIO INSTITUTE FOR CANCER RESEARCH (OICR); AL-AWAR, Rima; ISAAC, Methvin; CHAU, Anh My; MAMAI, Ahmed; WATSON, Iain; PODA, Gennady; SUBRAMANIAN, Pandiaraju; WILSON, Brian; UEHLING, David; (191 pag.)WO2019/119145; (2019); A1;,
Pyrroline – Wikipedia
1-Pyrroline | C4H7N – PubChem

Analyzing the synthesis route of 55750-48-6

The synthetic route of 55750-48-6 has been constantly updated, and we look forward to future research findings.

55750-48-6,55750-48-6, Methyl 2,5-dioxo-2,5-dihydro-1H-pyrrole-1-carboxylate is a pyrrolines compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

First, in analogy to the synthesis described in Intermediate 75, by coupling of N-(tert-butoxycarbonyl)-N-methyl-L-valyl-N-[(3R,4S,5S)-1-{(2S)-2-[(1R,2R)-2-carboxy-1-methoxypropyl]pyrrolidin-1-yl}-3-methoxy-5-methyl-1-oxoheptan-4-yl]-N-methyl-L-valinamide (Intermediate 26) and (1S,2R)-1-amino-2-phenylcyclopropanecarboxylic acid trifluoroacetate (Intermediate 207) in the presence of O-(7-azabenzotriazol-1-yl)-N,N,N?,N?-tetramethyluronium hexafluorophosphate and subsequent detachment of the Boc protecting group by means of trifluoroacetic acid, the amine compound N-methyl-L-valyl-N-[(3R,4S,5S)-1-{(2S)-2-[(1R,2R)-3-{[(1S,2R)-1-carboxy-2-phenylcyclopropyl]amino}-1-methoxy-2-methyl-3-oxopropyl]pyrrolidin-1-yl}-3-methoxy-5-methyl-1-oxoheptan-4-yl]-N-methyl-L-valinamide was prepared as the trifluoroacetate. [2324] To 22 mg (0.026 mmol) of this compound in 10 ml of methanol were then added 17 mg (0.05 mmol) of 9H-fluoren-9-ylmethyl 6-oxohexyl carbamate (Intermediate 208) and 2.3 mg of acetic acid, and also 11.4 mg (0.12 mmol) of borane-pyridine complex. The reaction mixture was stirred at RT overnight. Then the same amounts of borane-pyridine complex and acetic acid, and also 8 mg of fluoren-9-ylmethyl 6-oxohexyl carbamate, were added once again and the reaction mixture was stirred at RT for a further 24 h. This was followed by concentration under reduced pressure, and the residue was purified by means of preparative HPLC. After concentration of the corresponding fractions, the product was used immediately in the next stage. 33 mg of the still contaminated intermediate were taken up in 5 ml of DMF, and 1 ml of piperidine was added. After stirring at RT for 15 min, the reaction mixture was concentrated and the resulting residue was purified by preparative HPLC. Thus, 11 mg (55% of theory over 2 stages) of the aminocarboxylic acid intermediate were obtained. [2325] HPLC (Method 12): Rt=1.7 min; [2326] LC-MS (Method 11): Rt=0.7 min; MS (ESIpos): m/z=843 (M+H)+. [2327] 6 mg (7.12 mumol) of this intermediate were taken up in 1 ml of dioxane and then admixed with 6.6 mg (42.7 mumol) of methyl 2,5-dioxo-2,5-dihydro-1H-pyrrole-1-carboxylate and with 5 mul of saturated aqueous sodium hydrogencarbonate solution. The reaction mixture was stirred at RT for 1 h. Then another 3 portions each of 50 mul of the saturated aqueous sodium hydrogencarbonate solution were added and the reaction mixture was stirred at RT for a further 30 min. Then the reaction mixture was acidified to pH 2 with trifluoroacetic acid and subsequently concentrated under reduced pressure. The remaining residue was purified by means of preparative HPLC. After lyophilization from acetonitrile/water, 4 mg (60% of theory) of the title compound were obtained as a foam. [2328] HPLC (Method 12): Rt=1.9 min; [2329] LC-MS (Method 11): Rt=0.88 min; MS (ESIpos): m/z=923 (M+H)+

The synthetic route of 55750-48-6 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; Lerchen, Hans-Georg; Hammer, Stefanie; Harrenga, Axel; Kopitz, Charlotte Christine; Nising, Carl Friedrich; Sommer, Anette; Stelte-Luowig, Beatrix; Mahlert, Christoph; Schuhmacher, Joachim; Golfier, Sven; Greven, Simone; Bruder, Sandra; US2015/23989; (2015); A1;,
Pyrroline – Wikipedia
1-Pyrroline | C4H7N – PubChem

Downstream synthetic route of 31970-04-4

As the paragraph descriping shows that 31970-04-4 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.31970-04-4,Benzyl 2,5-dihydro-1H-pyrrole-1-carboxylate,as a common compound, the synthetic route is as follows.

Example 14; 8-(Y cis)-4-fluoropyrrol idin-3 -yloxy)-2-f 7-f 2-methoxyethoxy)imidazo fl,2-a1 pgammaridin-3 – yl)quinoline hydrochloride salt; Step A: Preparation of benzyl -oxa-S-azabicyclop.l.OJhexane-S-carboxylate:; Benzyl 2,5-dihydro-lH-pyrrole-l-carboxylate (11.0 g, 54.1 mmol, commercially available from Aldrich) and 3-chlorobenzoperoxoic acid (17.3 g, 70.4 mmol) were added to 150 mL of chloroform and heated to 46 0C for 20 hours. The mixture was cooled, dichloromethane was added, and the reaction was washed with a saturated solution OfNaHCO3 and Na2S2CO3. The combined organic layers were dried over MgSO4, filtered and concentrated to give 10.5 g (88% isolated yield) of the desired compound as an oil, which was used directly in the next step., 31970-04-4

As the paragraph descriping shows that 31970-04-4 is playing an increasingly important role.

Reference£º
Patent; ARRAY BIOPHARMA INC.; WO2008/124323; (2008); A1;,
Pyrroline – Wikipedia
1-Pyrroline | C4H7N – PubChem

Simple exploration of 872-32-2

872-32-2 2-Methyl-1-pyrroline 70103, apyrrolines compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.872-32-2,2-Methyl-1-pyrroline,as a common compound, the synthetic route is as follows.,872-32-2

EXAMPLE 5Preparation of 6-{2-[2-(2-chlorophenyl)ethyl]pyrrolidin-1-yl}-9H-purine (“A5”)5.1 3 ml of 1-methylpyrroline are dissolved in 25 nil of THF and deprotonated at -78¡ã C. for 30 minutes using 22.6 ml of BuLi (1 M in hexane). 6.5 g of 2-chlorobenzyl bromide are dissolved in 25 ml of THF and added dropwise at the temperature indicated. After 30 minutes, the mixture is allowed to warm to RT for 12 hours. For work-up, 50 ml of water are added, and the mixture is extracted to exhaustion with dichloromethane. The combined organic phases are dried over sodium sulfate, evaporated and purified by chromatography on silica gel, giving 4.5 g of 5-[2-(2-chlorophenyl)ethyl]-3,4-dihydro-2H-pyrrole as a colourless oil, which is employed in the next reaction; Rt.: 1.303 min; [M+H]+208.

872-32-2 2-Methyl-1-pyrroline 70103, apyrrolines compound, is more and more widely used in various fields.

Reference£º
Patent; Merck Patent GmbH; US2011/263561; (2011); A1;,
Pyrroline – Wikipedia
1-Pyrroline | C4H7N – PubChem