Little discovery in the laboratory: a new route for 6913-92-4

This molecular description is the mechanism of the reaction; it describes how individual atoms, ions, or molecules interact to form particular products.If you are interested, you can also browse other articles of 6913-92-4. We look forward to the emergence of more reaction modes in the future.

One of the major reasons is to use measurements of the macroscopic properties of a system, such as the rate of change in the concentration of reactants or products with time, to discover the sequence of events that occur at the molecular level. 6913-92-4, name is 1-Benzyl-3-pyrroline, introduce a new downstream synthesis route., 6913-92-4

6913-92-4, In a Biotage Initiator 2-5 mL vial, nitrone 1 (392 mg, 1.64 mmol) and N-benzyl-3-pyrroline 2 (314 mg, 1.97 mmol, 1.2 eq) were introduced. The vial was flushed with argon and 2.5 mL of anhydrous toluene was added (c = 0.66 mM). The vial was sealed with a septum cap and was sonicated for 20 s. The resulting mixture was irradiated by microwaves (temperature: 140 C). TLC monitoring (EtOAc) showed full conversion after 2 h. After the crude mixture was concentrated, the crude product was purified by flash silica gel column chromatography (EtOAc) to afford cycloadduct 3 (625 mg, 1.57 mmol, 96%) with no traces of other isomer. Monocrystals ofcompounds 3 were obtained from a saturated Et2O solution cooledin a freezer. Rf 0.48 (EtOAc). [a]D 40.4 (c 1.1, CH2Cl2). 1H NMR(400 MHz, CDCl3) d 7.37e7.20 (m, 5H, CH-ar), 4.59 (td,1H, J 7.0 Hz,J 3.0 Hz, H-4), 3.71e3.49 (m, 3H, NCH2Ph, H-6), 3.42 (dd, 1H,J 10.3 Hz, J 6.6 Hz, H-3), 2.78 (dd, 1H, J 10.3 Hz, J 3.0 Hz, H-5), 2.75e2.69 (m, 4H, NCH3, H-2), 2.65 (dd, 1H, J 9.4 Hz, J 3.7 Hz,H-20), 2.58 (dd, 1H, J 9.9 Hz, J 6.6 Hz, H-50), 2.14e2.08 (m, 1H, H-9), 2.00 (dtt, 1H, J 12.9 Hz, J 6.5 Hz, J 3.3 Hz, H-10), 1.90e1.78(m, 2H, H-11, H-12), 1.68e1.59 (m, 1H, H-120), 1.48 (dt, 1H,J 13.5 Hz, J 6.7 Hz, H-15), 1.38 (dd, 1H, J 12.1 Hz, J 3.2 Hz, H-13), 1.18 (t, 1H, J 12.3 Hz, H-90), 0.95e0.85 (m, 10H, H-11?, H-14, H-16). 13C NMR (100 MHz, CDCl3) d 172.8 (C]O), 138.9 (C-ar), 128.6(CH-ar), 128.3 (CH-ar), 127.1 (CH-ar), 88.0 (C-8), 79.6 (C-4), 71.9 (C-6), 59.6 (NCH2Ph), 59.4 (C-5), 59.3 (C-2), 49.1 (C-3), 48.2 (C-13), 41.0(C-9), 35.0 (C-11), 29.0 (C-10), 25.9 (NCH3), 24.5 (C-15), 24.2 (CH3),22.6 (C-12), 22.4 (CH3), 18.7 (CH3). HR-ESI-QToF MS (positivemode): m/z calcd for C24H36N3O2 [MH]: 398.2802, found:398.2806.

This molecular description is the mechanism of the reaction; it describes how individual atoms, ions, or molecules interact to form particular products.If you are interested, you can also browse other articles of 6913-92-4. We look forward to the emergence of more reaction modes in the future.

Reference£º
Article; Cecioni, Samy; Aouadi, Kaiss; Guiard, Julie; Parrot, Sandrine; Strazielle, Nathalie; Blondel, Sandrine; Ghersi-Egea, Jean-Francois; Chapelle, Christian; Denoroy, Luc; Praly, Jean-Pierre; European Journal of Medicinal Chemistry; vol. 98; (2015); p. 237 – 249;,
Pyrroline – Wikipedia
1-Pyrroline | C4H7N – PubChem