Interesting scientific research on 229625-50-7

Future efforts will undeniably focus on the diversification of the new catalytic transformations. These may comprise an expansion of the substrate scope from aromatic and heteroaromatic compounds to other hydrocarbons. Keep reading other articles of 229625-50-7. Safety of Di-tert-butyl chloromethyl phosphate.

With the volume and accessibility of scientific research increasing across the world, it has never been more important to continue building the reputation for quality and ethical publishing we’ve spent the past two centuries establishing.229625-50-7, Name is Di-tert-butyl chloromethyl phosphate, molecular formula is C9H20ClO4P, belongs to pyrrolines compound, is a common compound. In a patnet, author is Jin, Lei, once mentioned the new application about 229625-50-7, Safety of Di-tert-butyl chloromethyl phosphate.

Highly Proton Conductive Sulfonyl Imide Based Polymer Blended from Poly(arylene ether sulfone) and Parmax-1200 for Fuel Cells

Thermally and chemically stable, sulfonyl imide-based polymer blends have been prepared from sulfonimide poly(arylene ether sulfone) (SI-PAES) and sulfonimide Parmax-1200 (SI-Parmax-1200) using the solvent casting method. Initially, sulfonimide poly(arylene ether sulfone) (SI-PAES) polymers have typically been synthesized via direct polymerization of bis(4-chlorophenyl) sulfonyl imide (SI-DCDPS) and bis(4-fluorophenyl) sulfone (DFDPS) with bisphenol A (BPA). Subsequently, SI-Parmax-1200 has been synthesized via post-modification of the existing Parmax-1200 polymer followed by sulfonation and imidization. The SI-PAES/SI-Parmax-1200 blend membranes show high ion exchange capacity ranging from 1.65 to 1.97 meq/g, water uptake ranging from 22.8 to 65.4% and proton conductivity from 25,9 to 78.5 mS/cm. Markedly, the SI-PAES-40/SI-Parmax-1200 membrane (blended-40) exhibits the highest proton conductivity (78.5 mS/cm), which is almost similar to Nafion 117 (R) (84.73 mS/cm). The thermogravimetric analysis (TGA) and Fenton’s test confirm the excellent thermal and chemical stability of the synthetic polymer blends. Furthermore, the scanning electron microscopy (SEM) study shows a distinct phase separation at the hydrophobic/hydrophilic segments, which facilitate proton conduction throughout the ionic channel of the blend polymers. Therefore, the synthetic polymer blends represent an alternative to Nafion 117 (R) as proton exchangers for fuel cells.

Future efforts will undeniably focus on the diversification of the new catalytic transformations. These may comprise an expansion of the substrate scope from aromatic and heteroaromatic compounds to other hydrocarbons. Keep reading other articles of 229625-50-7. Safety of Di-tert-butyl chloromethyl phosphate.

Reference:
Pyrroline – Wikipedia,
,1-Pyrroline | C4H7N – PubChem