Brief introduction of 872-32-2

The synthetic route of 872-32-2 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.872-32-2,2-Methyl-1-pyrroline,as a common compound, the synthetic route is as follows.

5-Methyl-3,4-dihydro-2H-pyrrole (60.2 mmol, 1.0 equiv.) was dissolved in CCl4 (100 ml); at 0¡ã C., N-chlorosuccinimide (8.0 equiv.) was added in portions, and the mixture was heated for 72 h at boiling temperature. The reaction mixture was cooled to 0¡ã C., and the resulting solid was filtered out and washed with cooled (0¡ã C.) CCL4 (2.x.50 ml). The filtrate was concentrated to dryness under reduced pressure. Yield: 90percent, 872-32-2

The synthetic route of 872-32-2 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; Gruenenthal GmbH; US2010/222324; (2010); A1;,
Pyrroline – Wikipedia
1-Pyrroline | C4H7N – PubChem

Analyzing the synthesis route of 872-32-2

The synthetic route of 872-32-2 has been constantly updated, and we look forward to future research findings.

872-32-2, 2-Methyl-1-pyrroline is a pyrrolines compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

872-32-2, Intermediate 1: Methyl 3-chloro-lH-pyrrole-2-carboxylate At 55-60 ¡ãC with vigorous stirring to a mixture of NCS (107 g, 800 mmol) in THF (250 mL) in a 2 L flask was added 5-methyl-3,4-dihydro-2H-pyrrole (8.3 g, 100 mmol) in one-portion. After addition, the reaction spontaneously heated to reflux for about 5 min, then reacted at 60-70 ¡ãC for another 1.5 hours. After cooled to r.t., hexane (300 mL) and water (300 mL) were added to the mixture. The organic layer was separated, collected and concentrated. The residue was used in the next step without further purification. To a mixture of the crude 4,4-dichloro-5-(trichloromethyl)-3,4-dihydro-2H-pyrrole (240 g, 941 mmol) in MeOH (2 L) in an ice-bath was added a solution of NaOMe (324 g, 6 mol) in MeOH (1.5 L) drop-wise over an hour. After addition, the mixture was stirred at r.t. for another one hour. Then 2N HCl aq. was added to adjust its pH to 2 and the resulting was stirred at room temperature for 15 minutes. The mixture was concentrated and diluted with EtOAc (2.5 L) and water (2 L). The organic layer was separated, concentrated and purified by column chromatography eluting with EtOAc/PE and then crystallize upon standing. Methyl 3-chloro-lH-pyrrole-2-carboxylate was obtained as an orange solid (91.3 g, yield: 61percent). MS (m/z): 160.1 (M+H)+ . 1H NMR (400 MHz, DMSO-de) delta 12.05 (s, 1H), 6.98 (m, 1H), 6.21 (t, / = 2.6 Hz, 1H), 3.75 (s, 3H).

The synthetic route of 872-32-2 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; HUTCHISON MEDIPHARMA LIMITED; SU, Wei-Guo; DAI, Guangxiu; XIAO, Kun; JIA, Hong; VENABLE, Jennifer Diane; BEMBENEK, Scott Damian; WO2014/15675; (2014); A1;,
Pyrroline – Wikipedia
1-Pyrroline | C4H7N – PubChem

Simple exploration of 872-32-2

872-32-2 2-Methyl-1-pyrroline 70103, apyrrolines compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.872-32-2,2-Methyl-1-pyrroline,as a common compound, the synthetic route is as follows.

General procedure: Acyl chloride (1.2 mmol, 1.2 equiv) was added to a solution of 4-dimethylaminopyridine (DMAP) (1.2 mmol, 1.2 equiv) in acetonitrile (1.0 mL) at 0 ¡ãC. The reaction was stirred at room temperature for 15 min. A solution of the 5-methyl-3,4-dihydro-2H-pyrrole (1.0 mmol) in acetonitrile (1.0 mL) was added and the reaction was stirred at room temperature for 3 h. p-Toluenesulfonic acid monohydrate (3.0 mmol, 3.0 equiv) was added at 0 ¡ãC under inert atmosphere. The reaction was then stirred at room temperature for 2 h. Arylhydrazine (1.5 mmol, 1.5 equiv) was added and stirred for an addition 5 min at room temperature. The reaction was then heated to 82 ¡ãC for 20 h. The reaction cools down to room temperature. The residue was then dissolved in ethyl acetate and washed with brine and a saturated aqueous solution of NaHCO3. The combined organic layers were dried over anhydrous Na2SO4, filtered and concentrated in vacuo to give a crude solid, which was purified by column chromatography on silica gel., 872-32-2

872-32-2 2-Methyl-1-pyrroline 70103, apyrrolines compound, is more and more widely used in various fields.

Reference£º
Article; Yeo, Se Jeong; Liu, Yongxiang; Wang, Xiang; Tetrahedron; vol. 68; 3; (2012); p. 813 – 818;,
Pyrroline – Wikipedia
1-Pyrroline | C4H7N – PubChem

Analyzing the synthesis route of 872-32-2

The synthetic route of 872-32-2 has been constantly updated, and we look forward to future research findings.

872-32-2, 2-Methyl-1-pyrroline is a pyrrolines compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated,872-32-2

General procedure: 4-Chloro-benzenesulfonyl chloride (6.33 g, 30 mmol) was added to a solution of 4-dimethylaminopyridine (DMAP) (3.67 g, 30 mmol) in anhydrous DMF (25 mL) at 0 ¡ãC. The reaction was stirred at 23¡ã C for 30 minutes. A solution of 2-methyl-l-pyrroline (2.08 g, 25 mmol) in anhydrous DMF (25 mL) was added and the reaction was stirred at the same temperature for 1 hour. Methanesulfonic acid (4.87 mL, 75 mmol) was added to the reaction at 0 ¡ãC. The reaction was then stirred at 23¡ã C for 2 hours. 4-Bromo-2-fluoro-phenyl hydrazine hydrochloride (9.06 g, 35.7 mmol) was added and stirred for an additional hour at 23¡ã C. The reaction was then heated to 85 ¡ãC for 12 hours in a sealed tube. The reaction was then cooled to room temperature and concentrated in vacuo. The resulting residue was dissolved in ethyl acetate and washed with saturated aqueous solution of NaHC03 followed by brine. The combined organic layers were dried over anhydrous Na2S04; filtered and concentrated in vacuo to give a crude product, which was purified by column (0241) chromatography on silica gel eluting with 70:30 Hex: EtOAc to give N-(2-(5-bromo-7-fluoro- 2-methyl-lH-indol-3-yl)ethyl)-4-chlorobenzenesulfonamide (SI) as an off-white solid

The synthetic route of 872-32-2 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; THE REGENTS OF THE UNIVERSITY OF COLORADO, A BODY CORPORATE; WANG, Xiang; BARBOUR, Patrick; (44 pag.)WO2016/176634; (2016); A1;,
Pyrroline – Wikipedia
1-Pyrroline | C4H7N – PubChem

Some tips on 872-32-2

872-32-2 2-Methyl-1-pyrroline 70103, apyrrolines compound, is more and more widely used in various.

872-32-2, 2-Methyl-1-pyrroline is a pyrrolines compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

General procedure: 2-Methyl-pyrroline (1equiv.) was added to a suspension of an enzyme (20% weight) in a mixture of toluene/water (20mL/100muL), followed by the addition of benzylamine (1equiv.) and isocyanoester 1 (1equiv.). The mixture was stirred at room temperature. The enzyme and water were filtered off through a funnel containing Celite and MgSO4. The solvent was then evaporated in vacuum. The product was purified by column chromatography (silica gel, DCM/methanol).

872-32-2 2-Methyl-1-pyrroline 70103, apyrrolines compound, is more and more widely used in various.

Reference£º
Article; Wilk, Monika; Brodzka, Anna; Koszelewski, Dominik; Madej, Arleta; Paprocki, Daniel; ??d?o-Dobrowolska, Anna; Ostaszewski, Ryszard; Bioorganic Chemistry; vol. 93; (2019);,
Pyrroline – Wikipedia
1-Pyrroline | C4H7N – PubChem

New learning discoveries about 872-32-2

As the paragraph descriping shows that 872-32-2 is playing an increasingly important role.

872-32-2, 2-Methyl-1-pyrroline is a pyrrolines compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

6.3 1.4 ml of 2-methyl-1-pyrroline are dissolved in 50 ml of THF and cooled to -78¡ã C. 11.3 ml of n-butyllithium (15percent in n-hexane) are then added dropwise. After stirring for 30 minutes, the (4-bromomethylnaphthalen-1-yl)morpholin-4-ylmethanone dissolved in 25 ml of THF is added, and the mixture is allowed to warm to RT for 8 h. Conventional work-up and purification gives 2 g of yellow oil {4-[2-(4,5-dihydro-3H-pyrrol-2-yl)ethyl]naphthalen-1-yl)morpholin-4-ylmethanone; Rt: 1.407 min; [M+H]+337.2.

As the paragraph descriping shows that 872-32-2 is playing an increasingly important role.

Reference£º
Patent; Merck Patent GmbH; US2011/263561; (2011); A1;,
Pyrroline – Wikipedia
1-Pyrroline | C4H7N – PubChem

Analyzing the synthesis route of 872-32-2

The synthetic route of 872-32-2 has been constantly updated, and we look forward to future research findings.

872-32-2, 2-Methyl-1-pyrroline is a pyrrolines compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

5-methyl-3,4-dihydro-2H-pyrrole(1) (4 g, 0.05 mol) was dissolved in THF (120 ml), to which N-chlorosuccinimide (51.4 g, 0.39 mol) was slowly added at 0¡ã C. The mixture was stirred for 15 minutes, followed by reflux for 2.5 hours. THF was eliminated under reduced pressure. Extraction was performed with dichloromethane. The organic layer was washed with saturated brine, separated, dried (anhydrous MgSO4), filtered, and concentrated under reduced pressure. The obtained compound 4,4-dichloro-5-(trichloromethyl)-3,4-dihydro-2H-pyrrole(2) was used for the next reaction without purification. 4,4-dichloro-5-(trichloromethyl)-3,4-dihydro-2H-pyrrole(2) (12 g, 0.05 mol) was dissolved in methanol (100 ml), to which sodium methoxide (NaOMe) (28 wt percent methanol solution) (16 g, 0.29 mol) was slowly added at 0¡ã C., followed by reaction at room temperature for 2 hours. Extraction was performed with ethyl acetate. The organic layer was washed with saturated brine, separated, dried (MgSO4), filtered, and concentrated under reduced pressure. The residue was separated by column chromatography (SiO2, eluent: hexane/ethyl acetate, 5/1) to give 6.5 g of the target compound methyl 3-chloro-1H-pyrrole-2-carboxylate(3) as a brown solid (0.04 mmol, yield: 77percent). 1H NMR (300 MHz, CDCl3) delta 9.11 ( br s, 1H, NH), 6.87 (t, J=2.7 Hz, 1H), 6.26 (t, J=2.7 Hz, 1H), 3.90 (s, 3H).

The synthetic route of 872-32-2 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; KOREA RESEARCH INSTITUTE OF CHEMICAL TECHNOLOGY; Lee, Ge Hyeong; Lim, Hee-Jong; Cho, Heeyeong; Park, Woo Kyu; Kim, Seong Hwan; Choi, Jung Hwan; (148 pag.)US2018/105527; (2018); A1;,
Pyrroline – Wikipedia
1-Pyrroline | C4H7N – PubChem

New learning discoveries about 872-32-2

As the paragraph descriping shows that 872-32-2 is playing an increasingly important role.

872-32-2, 2-Methyl-1-pyrroline is a pyrrolines compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

General procedure: Acyl chloride (1.2 mmol, 1.2 equiv) was added to a solution of 4-dimethylaminopyridine (DMAP) (1.2 mmol, 1.2 equiv) in acetonitrile (1.0 mL) at 0 ¡ãC. The reaction was stirred at room temperature for 15 min. A solution of the 5-methyl-3,4-dihydro-2H-pyrrole (1.0 mmol) in acetonitrile (1.0 mL) was added and the reaction was stirred at room temperature for 3 h. p-Toluenesulfonic acid monohydrate (3.0 mmol, 3.0 equiv) was added at 0 ¡ãC under inert atmosphere. The reaction was then stirred at room temperature for 2 h. Arylhydrazine (1.5 mmol, 1.5 equiv) was added and stirred for an addition 5 min at room temperature. The reaction was then heated to 82 ¡ãC for 20 h. The reaction cools down to room temperature. The residue was then dissolved in ethyl acetate and washed with brine and a saturated aqueous solution of NaHCO3. The combined organic layers were dried over anhydrous Na2SO4, filtered and concentrated in vacuo to give a crude solid, which was purified by column chromatography on silica gel.

As the paragraph descriping shows that 872-32-2 is playing an increasingly important role.

Reference£º
Article; Yeo, Se Jeong; Liu, Yongxiang; Wang, Xiang; Tetrahedron; vol. 68; 3; (2012); p. 813 – 818;,
Pyrroline – Wikipedia
1-Pyrroline | C4H7N – PubChem

 

New learning discoveries about 872-32-2

As the paragraph descriping shows that 872-32-2 is playing an increasingly important role.

872-32-2, 2-Methyl-1-pyrroline is a pyrrolines compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

At 55 – 60 ¡ãC with vigorous stirring to a mixture of NCS (107 g, 800 mmol) in THF (250 mL) in a 2 L flask was added 5-methyl-3,4-dihydro-2H-pyrrole (8.3 g, 100 mmol) in one- portion. After addition, the reaction spontaneously heated to reflux for about 5 min, then reacted at 60 – 70 ¡ãC for another 1.5 hours. After cooled to r.t., hexane (300 mL) and water (300 mL) were added to the mixture. The organic layer was separated, collected and concentrated. The residue was used in the next step without further purification.

As the paragraph descriping shows that 872-32-2 is playing an increasingly important role.

Reference£º
Patent; HUTCHISON MEDIPHARMA LIMITED; SU, Wei-guo; DAI, Guangxiu; XIAO, Kun; JIA, Hong; ZHANG, Zhulin; VENABLE, Jennifer Diane; BEMBENEK, Scott Damian; CHAI, Wenying; WO2014/15830; (2014); A1;,
Pyrroline – Wikipedia
1-Pyrroline | C4H7N – PubChem

 

Analyzing the synthesis route of 872-32-2

The synthetic route of 872-32-2 has been constantly updated, and we look forward to future research findings.

872-32-2, 2-Methyl-1-pyrroline is a pyrrolines compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

General procedure: Acyl chloride (1.2 mmol, 1.2 equiv) was added to a solution of 4-dimethylaminopyridine (DMAP) (1.2 mmol, 1.2 equiv) in acetonitrile (1.0 mL) at 0 ¡ãC. The reaction was stirred at room temperature for 15 min. A solution of the 5-methyl-3,4-dihydro-2H-pyrrole (1.0 mmol) in acetonitrile (1.0 mL) was added and the reaction was stirred at room temperature for 3 h. p-Toluenesulfonic acid monohydrate (3.0 mmol, 3.0 equiv) was added at 0 ¡ãC under inert atmosphere. The reaction was then stirred at room temperature for 2 h. Arylhydrazine (1.5 mmol, 1.5 equiv) was added and stirred for an addition 5 min at room temperature. The reaction was then heated to 82 ¡ãC for 20 h. The reaction cools down to room temperature. The residue was then dissolved in ethyl acetate and washed with brine and a saturated aqueous solution of NaHCO3. The combined organic layers were dried over anhydrous Na2SO4, filtered and concentrated in vacuo to give a crude solid, which was purified by column chromatography on silica gel.

The synthetic route of 872-32-2 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Yeo, Se Jeong; Liu, Yongxiang; Wang, Xiang; Tetrahedron; vol. 68; 3; (2012); p. 813 – 818;,
Pyrroline – Wikipedia
1-Pyrroline | C4H7N – PubChem