New learning discoveries about 1193-54-0

As the paragraph descriping shows that 1193-54-0 is playing an increasingly important role.

1193-54-0, 3,4-Dichloro-1H-pyrrole-2,5-dione is a pyrrolines compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

General procedure: A mixture of 2-(7-methoxynaphthalen-1-yl)ethanamine (compound 3, 101 mg, 0.5 mmol), sodium acetate (82 mg, 1.0 mmol) and cyclic anhydrides 1.0 mmol) in 5mL acetic acid was heated to reflux for 3 h in a round bottomed flask. After the completion of reaction (as evidenced by TLC), the resulting mixture was concentrated under reduced pressure and washed with ethyl acetate (10 mL¡Á3), then the concentrated organic layer was purified by column chromatography on silica gel to obtain pure product., 1193-54-0

As the paragraph descriping shows that 1193-54-0 is playing an increasingly important role.

Reference£º
Article; Chang, Ying; Pi, Weiyi; Ang, Wei; Liu, Yuanyuan; Li, Chunlong; Zheng, Jiajia; Xiong, Li; Yang, Tao; Luo, Youfu; Bioorganic and Medicinal Chemistry Letters; vol. 24; 7; (2014); p. 1672 – 1676;,
Pyrroline – Wikipedia
1-Pyrroline | C4H7N – PubChem

New learning discoveries about 25021-08-3

As the paragraph descriping shows that 25021-08-3 is playing an increasingly important role.

25021-08-3, 2-(2,5-Dioxo-2,5-dihydro-1H-pyrrol-1-yl)acetic acid is a pyrrolines compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

200 mg (0.594 mmol) of tert-butyl (14-amino-3,6,9,12-tetraoxatetradec-1-yl)carbamate, 111 mg (0.713 mmol) of (2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)acetic acid and 410 mul (2.4 mmol) of N,N-diisopropylethylamine were dissolved in 6 ml of dimethylformamide, and 339 mg (0.892 mmol) of HATU were added. The reaction mixture was stirred at RT for 1 h and purified directly by preparative RP-HPLC (column: Reprosil 250*30; 10mu, flow rate: 50 ml/min, MeCN/water/0.1% TFA). The solvents were evaporated under reduced pressure and the residue was dried under high vacuum. This gave 130 mg (43% of theory) of tert-butyl [17-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)-16-oxo-3,6,9,12-tetraoxa-15-azaheptadec-1-yl]carbamate. LC-MS (Method 1): Rt=0.71 min; MS (ESIpos): m/z=474 (M+H)+., 25021-08-3

As the paragraph descriping shows that 25021-08-3 is playing an increasingly important role.

Reference£º
Patent; Bayer Pharma Aktiengesellschaft; LERCHEN, Hans-Georg; REBSTOCK, Anne-Sophie; CANCHO GRANDE, Yolanda; MARX, Leo; STELTE-LUDWIG, Beatrix; TERJUNG, Carsten; MAHLERT, Christoph; GREVEN, Simone; SOMMER, Anette; BERNDT, Sandra; (684 pag.)US2018/169256; (2018); A1;,
Pyrroline – Wikipedia
1-Pyrroline | C4H7N – PubChem

Simple exploration of 25021-08-3

25021-08-3, 25021-08-3 2-(2,5-Dioxo-2,5-dihydro-1H-pyrrol-1-yl)acetic acid 319935, apyrrolines compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.25021-08-3,2-(2,5-Dioxo-2,5-dihydro-1H-pyrrol-1-yl)acetic acid,as a common compound, the synthetic route is as follows.

Trifluoroacetic acid/N-{2-[2-(2-aminoethoxy)ethoxy]ethyl}-2-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)acetamide (1:1) 200 mg (0.805 mmol) of tert-Butyl {2-[2-(2-aminoethoxy)ethoxy]ethyl}carbamate, 150 mg (0.966 mmol) of (2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)acetic acid and 560 mul (3.2 mmol) of N,N-diisopropylethylamine were dissolved in 10 ml of dimethylformamide, and 459 mg (1.21 mmol) of HATU were added. The reaction mixture was stirred at RT for 30 minutes. The solvents were evaporated under reduced pressure and the residue was dissolved in dichloromethane. The organic phase was washed twice with 5% strength citric acid solution and dried over magnesium sulphate, and the solvent was evaporated under reduced pressure. The residue was purified using Biotage Isolera (silica gel, column 25 g SNAP, dichloromethane:methanol 98:2). This gave 276 mg (89% of theory) of tert-Butyl {2-[2-(2-{[(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)acetyl]amino}ethoxy)ethoxy]ethyl}carbamate. LC-MS (Method 1): Rt=0.67 min; MS (ESIpos): m/z=386 (M+H)+.

25021-08-3, 25021-08-3 2-(2,5-Dioxo-2,5-dihydro-1H-pyrrol-1-yl)acetic acid 319935, apyrrolines compound, is more and more widely used in various fields.

Reference£º
Patent; BAYER PHARMA AKTIENGESELLSCHAFT; LERCHEN, Hans-Georg; REBSTOCK, Anne-Sophie; CANCHO GRANDE, Yolanda; WITTROCK, Sven; BERNDT, Sandra; GRITZAN, Uwe; FITTING, Jenny; STELTE-LUDWIG, Beatrix; JONES, Patrick; MAHLERT, Christoph; VOTSMEIER, Christian; SCHOeNFELD, Dorian; TRAUTWEIN, Mark; WEBER, Ernst; PAWLOWSKI, Nikolaus; GREVEN, Simone; GLUeCK, Julian Marius; HAMMER, Stefanie; DIETZ, Lisa; MAeRSCH, Stephan; (357 pag.)US2020/138970; (2020); A1;,
Pyrroline – Wikipedia
1-Pyrroline | C4H7N – PubChem

Analyzing the synthesis route of 134272-64-3

134272-64-3, The synthetic route of 134272-64-3 has been constantly updated, and we look forward to future research findings.

134272-64-3, N-(2-Aminoethyl)maleimide Hydrochloride is a pyrrolines compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

Reaction of commercially available Boc-Gly-Gly-Gly-OH (compound 8) with Nhydroxyxuccinimide and EDC coupling agent affords compound 9. Reaction of compound 9 with 1-(2-aminoethyl)-maleimide HC1 in the presence of a base such as diisopropyl ethyl amine (DIPEA) followed by Boc deprotection with HC1 in methoxymethyl ether gives compound 10. Reaction of compound 10 with glutamic anhydride gives compound 11. Reaction of compound 11 with DM? using EDC as coupling agent will give the desired product compound 12.

134272-64-3, The synthetic route of 134272-64-3 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; IMMUNOGEN, INC.; WIDDISON, Wayne, C.; WO2014/134457; (2014); A2;,
Pyrroline – Wikipedia
1-Pyrroline | C4H7N – PubChem

Brief introduction of 25021-08-3

25021-08-3, The synthetic route of 25021-08-3 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.25021-08-3,2-(2,5-Dioxo-2,5-dihydro-1H-pyrrol-1-yl)acetic acid,as a common compound, the synthetic route is as follows.

Trifluoroacetic acid/N-(2-aminoethyl)-2-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)acetamide (1:1) The title compound was prepared by classical methods of peptide chemistry from commercially available (2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)acetic acid and tert-Butyl (2-amino-ethyl)carbamate.

25021-08-3, The synthetic route of 25021-08-3 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; BAYER PHARMA AKTIENGESELLSCHAFT; LERCHEN, Hans-Georg; REBSTOCK, Anne-Sophie; CANCHO GRANDE, Yolanda; WITTROCK, Sven; BERNDT, Sandra; GRITZAN, Uwe; FITTING, Jenny; STELTE-LUDWIG, Beatrix; JONES, Patrick; MAHLERT, Christoph; VOTSMEIER, Christian; SCHOeNFELD, Dorian; TRAUTWEIN, Mark; WEBER, Ernst; PAWLOWSKI, Nikolaus; GREVEN, Simone; GLUeCK, Julian Marius; HAMMER, Stefanie; DIETZ, Lisa; MAeRSCH, Stephan; (357 pag.)US2020/138970; (2020); A1;,
Pyrroline – Wikipedia
1-Pyrroline | C4H7N – PubChem

Analyzing the synthesis route of 55750-49-7

The synthetic route of 55750-49-7 has been constantly updated, and we look forward to future research findings.

55750-49-7, Ethyl 2,5-dioxo-2,5-dihydro-1H-pyrrole-1-carboxylate is a pyrrolines compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

55750-49-7, A solution of 82 (278 mg, 0.55 minol) in Tesser?s Base (20 mL, i,4-dioxane/methanol/4M NaOH, 30:9:1 v/v) was stirred at room temperature for 10 minutes. The solution was then concentrated in vacuo to afford a yellow oil, which was used without further purification. To the crude oil was added a mixture of 45 (163 mg, 0.66 minol) in saturated aqueous sodium bicarbonate (14 mL), and the mixture stirred at room temperature for 5 minutes. Themixture was then extracted with dichloromethane (3 x), the combined organic layers dried over anhydrous magnesium sulfate, filtered and the solution concentrated in vacuo. Purification by column chromatography (EtOAc/hexanes, 1:2) afforded the title compound 83 (100 mg, 50%) as a yellow oil. [aID232 = -1.0 (c 1.00 in CHCI3); 1H NMR (400 MHz, CDCI3) oe 1.33-1.41 (2H, m, H-3?), 1.44 (9H, s, Boc), 1.59-1.69 (2H, m, H-4?), 1.81-1.95(2H, m, H-2?), 2.39 (3H, s, 3?-Me), 3.51 (2H, t, J = 7.2 Hz, H-5?), 4.97-5.01 (iH, m, H-i?),5.09 (iH, d, J = 7.4 Hz, NH), 6.69 (2H, 5, H-3, H-4); 13C NMR (100 MHz, CDCI3) oe 11.5 (CH3, 3?-Me), 22.4 (CH2, C-3?), 27.9 (CH2, C-4?), 28.3 (3 x CH3, Boc), 33.4 (CH2, C-2?),37.2 (CH2, C-5?), 48.0 (CH, C-i?), 80.4 (C, Boc), 134.1 (2 x CH, C-3, C-4), i55.0 (C, Boc),i67.i (C, C-3?), i70.8 (2 x C, C-2, C-5), 179.1 (C, C-5?); Vmax (cm1) 3336, 2925, i702,1514, i367, ii64, 828; HRMS-ESI [M+Na] Calcd. for C17H24N4O5Na 387.i639, found387. i652.

The synthetic route of 55750-49-7 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; SAMMUT, Ivan Andrew; HARRISON, Joanne Clare; HEWITT, Russell James; READ, Morgayn Iona; STANLEY, Nathan John; WOODS, Laura Molly; KUEH, Jui Thiang Brian; JAY-SMITH, Morgan; SMITH, Robin Andrew James; GILES, Gregory; LARSEN, Lesley; RENNISON, David; BRIMBLE, Margaret Anne; LARSEN, David Samuel; (209 pag.)WO2017/95237; (2017); A1;,
Pyrroline – Wikipedia
1-Pyrroline | C4H7N – PubChem

Some tips on 6913-92-4

6913-92-4 1-Benzyl-3-pyrroline 561506, apyrrolines compound, is more and more widely used in various fields.

6913-92-4, 1-Benzyl-3-pyrroline is a pyrrolines compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

6913-92-4, Example 26 Preparation of 5-[5-Fluoro-2-oxo-1,2-dihydro-indol-(3Z)-ylidenemethyl]-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (1-benzyl-4-hydroxy-pyrrolidin-3-yl)-amide Preparation of 4-Amino-1-benzyl-pyrrolidin-3-ol Step 1: To an ice-cooled solution of 26a (4.77 g, 30 mmol), 98% H2SO4 (1.95 mL), H2O (4.5 mL) and acetone (30 mL) was added 85% mCPBA (7.91 g, 39 mmol) with stirring. The mixture was allowed to react for 48 hrs at r.t. Acetone was evaporated and the mixture was neutralized with 1N aq. NaOH and extracted with toluene. The organic phase was dried over anhy. MgSO4 and evaporated. The residue was purified by column chromatography (EA:PE=1:4) to provide 26b (2.0 g, 38%).

6913-92-4 1-Benzyl-3-pyrroline 561506, apyrrolines compound, is more and more widely used in various fields.

Reference£º
Patent; Xcovery, Inc.; US2009/76005; (2009); A1;,
Pyrroline – Wikipedia
1-Pyrroline | C4H7N – PubChem

Downstream synthetic route of 55750-49-7

As the paragraph descriping shows that 55750-49-7 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.55750-49-7,Ethyl 2,5-dioxo-2,5-dihydro-1H-pyrrole-1-carboxylate,as a common compound, the synthetic route is as follows.

55750-49-7, A solution of 62 (2.12 g, 5.4 minol), acetic acid (1.5 mL) and palladium-on-carbon (0.2 g,10% w/w) in methanol (30 mL) was stirred at room temperature under a hydrogenatmosphere for 90 minutes. The mixture was then filtered through Celite and the solution concentrated in vacuo to afford a yellow oil, which was used without further purification. To the crude oil was added a mixture of 45 (1.36 g, 8.1 minol) in saturated aqueous sodium bicarbonate (50 mL) at 0 C, and the mixture stirred at 0 C for 10 minutes. Acetonitrile (25mL) was then added and the mixture stirred at room temperature for 90 min. The mixture was then extracted with dichloromethane (3 x), the combined organic layers dried over anhydrous magnesium sulfate, filtered and the solution concentrated in vacuo. Purification by column chromatography (EtOAc/hexanes, 1:2) afforded the title compound 63 (1.43 g, 78%) as a yellow oil. [aID237 = + 11.1 (c 1.00 in CHCI3); 1H NMR (400 MHz, CDCI3) oe 1.31-1.38 (2H, m, H-4?), 1.44 (9H, s, Boc), 1.59-1.67 (3H, m, Hb-3?, H-5?), 1.79-1.83 (1H, m,Ha3?), 3.51 (2H, t, J = 7.2 Hz, H-6?), 3.74 (3H, s, OMe), 4.27 (1H, m, H-2?), 5.08 (1H, d, J= 7.9 Hz, NH), 6.70 (2H, s, H-3, H-4); 13C NMR (100 MHz, CDCI3) oe 22.4 (CH2, C-4?), 28.0(CH2, C-5?), 28.3 (3 x CH3, Boc), 32.1 (CH2, C-3?), 37.3 (CH, C-6?), 52.2 (CH3, OMe), 53.2(CH, C-2?), 79.8 (C, Boc), 134.1 (2 x CH, C-3, C-4), 155.3 (C, Boc), 170.7 (2 x C, C-2, C-5), 173.1 (C, C-i?); vmax (cm1) 3374, 2952, 1698, 1365, 1160, 828, 694; HRMS-ESI[M+Na] Calcd. for C16H24N2O6Na 363.1527, found 363.1528.

As the paragraph descriping shows that 55750-49-7 is playing an increasingly important role.

Reference£º
Patent; SAMMUT, Ivan Andrew; HARRISON, Joanne Clare; HEWITT, Russell James; READ, Morgayn Iona; STANLEY, Nathan John; WOODS, Laura Molly; KUEH, Jui Thiang Brian; JAY-SMITH, Morgan; SMITH, Robin Andrew James; GILES, Gregory; LARSEN, Lesley; RENNISON, David; BRIMBLE, Margaret Anne; LARSEN, David Samuel; (209 pag.)WO2017/95237; (2017); A1;,
Pyrroline – Wikipedia
1-Pyrroline | C4H7N – PubChem

Analyzing the synthesis route of 73286-71-2

The synthetic route of 73286-71-2 has been constantly updated, and we look forward to future research findings.

73286-71-2, N-Boc-2-pyrroline is a pyrrolines compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated,73286-71-2

To N-Boc pyrroline (480 mg; 2.83 mmol) and chloro oxime 2a (557 mg; 2.93 mmol) in ethyl acetate (15 mL), was added dropwise triethylamine (0.4 mL) in ethyl acetate (15 mL). The reaction mixture was stirred at room temperature for 24 hours. An additional portion of chloro oxime 2a (234 mg; 1.23 mmol) and triethylamine were added. After stirring overnight, the reaction mixture was poured into water (50 mL) and extracted. The organic layer was dried (MgSO4), filtered and evaporated. Chromatography with 30% ethyl acetate/hexanes yielded 3a as a white solid.MS 345 (M+Na).

The synthetic route of 73286-71-2 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; Macielag, Mark J.; Weidner-Wells, Michele A.; Lin, Shu-Chen; US2009/29980; (2009); A1;,
Pyrroline – Wikipedia
1-Pyrroline | C4H7N – PubChem

Analyzing the synthesis route of 25021-08-3

The synthetic route of 25021-08-3 has been constantly updated, and we look forward to future research findings.

25021-08-3, 2-(2,5-Dioxo-2,5-dihydro-1H-pyrrol-1-yl)acetic acid is a pyrrolines compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

250 mg (1.07 mmol) of tert-butyl 3-[2-(2-aminoethoxy)ethoxy]propanoate, 151 mg (0.974 mmol) of 2-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)acetic acid, 224 mg (1.46 mmol) of 1-hydroxy-1H-benzotriazole hydrate and 224 mg (1.17 mmol) of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride were dissolved in 5.0 ml of dimethylformamide. The reaction mixture was stirred at RT for 1 h. Ethyl acetate was added and the mixture was extracted twice with 5% citric acid solution and with saturated sodium hydrogencarbonate solution. The organic phase was washed twice with saturated sodium chloride solution and dried over magnesium sulphate, and the solvent was evaporated off under reduced pressure. The residue was purified by preparative RP-HPLC (column: Reprosil 250*40; 10mu, flow rate: 50 ml/min, MeCN/water/0.1% TFA). The solvents were evaporated under reduced pressure and the residue was dried under high vacuum. This gave 267 mg (64% of theory) of tert-butyl 3-[2-(2-{[(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)acetyl]amino}ethoxy)ethoxy]propanoate. LC-MS (Method 1): Rt=0.73 min; MS (ESIpos): m/z=371 (M+H)+., 25021-08-3

The synthetic route of 25021-08-3 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; BAYER PHARMA AKTIENGESELLSCHAFT; LERCHEN, Hans-Georg; REBSTOCK, Anne-Sophie; MARX, Leo; JOHANNES, Sarah Anna Liesa; STELTE-LUDWIG, Beatrix; DIETZ, Lisa; TERJUNG, Carsten; MAHLERT, Christoph; GREVEN, Simone; SOMMER, Anette; BERNDT, Sandra; (481 pag.)US2019/77752; (2019); A1;,
Pyrroline – Wikipedia
1-Pyrroline | C4H7N – PubChem